MNE-CPP 0.1.9
A Framework for Electrophysiology
Loading...
Searching...
No Matches
debiasedsquaredweightedphaselagindex.cpp
Go to the documentation of this file.
1//=============================================================================================================
39//=============================================================================================================
40// INCLUDES
41//=============================================================================================================
42
44#include "../network/networknode.h"
45#include "../network/networkedge.h"
46#include "../network/network.h"
47
48#include <utils/spectral.h>
49
50//=============================================================================================================
51// QT INCLUDES
52//=============================================================================================================
53
54#include <QDebug>
55#include <QtConcurrent>
56
57//=============================================================================================================
58// EIGEN INCLUDES
59//=============================================================================================================
60
61#include <unsupported/Eigen/FFT>
62
63//=============================================================================================================
64// USED NAMESPACES
65//=============================================================================================================
66
67using namespace CONNECTIVITYLIB;
68using namespace Eigen;
69using namespace UTILSLIB;
70
71//=============================================================================================================
72// DEFINE GLOBAL METHODS
73//=============================================================================================================
74
75//=============================================================================================================
76// DEFINE MEMBER METHODS
77//=============================================================================================================
78
82
83//*******************************************************************************************************
84
86{
87// QElapsedTimer timer;
88// qint64 iTime = 0;
89// timer.start();
90
91 Network finalNetwork("DSWPLI");
92
93 if(connectivitySettings.isEmpty()) {
94 qDebug() << "DebiasedSquaredWeightedPhaseLagIndex::calculate - Input data is empty";
95 return finalNetwork;
96 }
97
98 if(AbstractMetric::m_bStorageModeIsActive == false) {
99 connectivitySettings.clearIntermediateData();
100 }
101
102 finalNetwork.setSamplingFrequency(connectivitySettings.getSamplingFrequency());
103
104 #ifdef EIGEN_FFTW_DEFAULT
105 fftw_make_planner_thread_safe();
106 #endif
107
108 //Create nodes
109 int rows = connectivitySettings.at(0).matData.rows();
110 RowVectorXf rowVert = RowVectorXf::Zero(3);
111
112 for(int i = 0; i < rows; ++i) {
113 rowVert = RowVectorXf::Zero(3);
114
115 if(connectivitySettings.getNodePositions().rows() != 0 && i < connectivitySettings.getNodePositions().rows()) {
116 rowVert(0) = connectivitySettings.getNodePositions().row(i)(0);
117 rowVert(1) = connectivitySettings.getNodePositions().row(i)(1);
118 rowVert(2) = connectivitySettings.getNodePositions().row(i)(2);
119 }
120
121 finalNetwork.append(NetworkNode::SPtr(new NetworkNode(i, rowVert)));
122 }
123
124 // Check that iNfft >= signal length
125 int iSignalLength = connectivitySettings.at(0).matData.cols();
126 int iNfft = connectivitySettings.getFFTSize();
127
128 // Generate tapers
129 QPair<MatrixXd, VectorXd> tapers = Spectral::generateTapers(iSignalLength, connectivitySettings.getWindowType());
130
131 // Initialize
132 int iNRows = connectivitySettings.at(0).matData.rows();
133 int iNFreqs = int(floor(iNfft / 2.0)) + 1;
134
135 // Check if start and bin amount need to be reset to full spectrum
136 if(m_iNumberBinStart == -1 ||
137 m_iNumberBinAmount == -1 ||
138 m_iNumberBinStart > iNFreqs ||
139 m_iNumberBinAmount > iNFreqs ||
140 m_iNumberBinAmount + m_iNumberBinStart > iNFreqs) {
141 qDebug() << "DebiasedSquaredWeightedPhaseLagIndex::calculate - Resetting to full spectrum";
142 AbstractMetric::m_iNumberBinStart = 0;
143 AbstractMetric::m_iNumberBinAmount = iNFreqs;
144 }
145
146 // Pass information about the FFT length. Use iNFreqs because we only use the half spectrum
147 finalNetwork.setFFTSize(iNFreqs);
148 finalNetwork.setUsedFreqBins(AbstractMetric::m_iNumberBinAmount);
149
150 QMutex mutex;
151
152 std::function<void(ConnectivitySettings::IntermediateTrialData&)> computeLambda = [&](ConnectivitySettings::IntermediateTrialData& inputData) {
153 return compute(inputData,
154 connectivitySettings.getIntermediateSumData().vecPairCsdSum,
155 connectivitySettings.getIntermediateSumData().vecPairCsdImagAbsSum,
156 connectivitySettings.getIntermediateSumData().vecPairCsdImagSqrdSum,
157 mutex,
158 iNRows,
159 iNFreqs,
160 iNfft,
161 tapers);
162 };
163
164// iTime = timer.elapsed();
165// qWarning() << "Preparation" << iTime;
166// timer.restart();
167
168 // Compute DSWPLI in parallel for all trials
169 QFuture<void> result = QtConcurrent::map(connectivitySettings.getTrialData(),
170 computeLambda);
171 result.waitForFinished();
172
173// iTime = timer.elapsed();
174// qWarning() << "ComputeSpectraPSDCSD" << iTime;
175// timer.restart();
176
177 // Compute DSWPLI
178 computeDSWPLI(connectivitySettings,
179 finalNetwork);
180
181// iTime = timer.elapsed();
182// qWarning() << "Compute" << iTime;
183// timer.restart();
184
185 return finalNetwork;
186}
187
188//=============================================================================================================
189
191 QVector<QPair<int,MatrixXcd> >& vecPairCsdSum,
192 QVector<QPair<int,MatrixXd> >& vecPairCsdImagAbsSum,
193 QVector<QPair<int,MatrixXd> >& vecPairCsdImagSqrdSum,
194 QMutex& mutex,
195 int iNRows,
196 int iNFreqs,
197 int iNfft,
198 const QPair<MatrixXd, VectorXd>& tapers)
199{
200 if(inputData.vecPairCsd.size() == iNRows &&
201 inputData.vecPairCsdImagSqrd.size() == iNRows &&
202 inputData.vecPairCsdImagAbs.size() == iNRows) {
203 //qDebug() << "DebiasedSquaredWeightedPhaseLagIndex::compute - vecPairCsd, vecPairCsdImagSqrd and vecPairCsdImagAbs were already computed for this trial.";
204 return;
205 }
206
207 int i,j;
208
209 // Calculate tapered spectra if not available already
210 // This code was copied and changed modified Utils/Spectra since we do not want to call the function due to time loss.
211 if(inputData.vecTapSpectra.isEmpty()) {
212 RowVectorXd vecInputFFT, rowData;
213 RowVectorXcd vecTmpFreq;
214
215 MatrixXcd matTapSpectrum(tapers.first.rows(), iNFreqs);
216
217 FFT<double> fft;
218 fft.SetFlag(fft.HalfSpectrum);
219
220 for (i = 0; i < iNRows; ++i) {
221 // Substract mean
222 rowData.array() = inputData.matData.row(i).array() - inputData.matData.row(i).mean();
223
224 // Calculate tapered spectra if not available already
225 for(j = 0; j < tapers.first.rows(); j++) {
226 // Zero padd if necessary. The zero padding in Eigen's FFT is only working for column vectors.
227 if (rowData.cols() < iNfft) {
228 vecInputFFT.setZero(iNfft);
229 vecInputFFT.block(0,0,1,rowData.cols()) = rowData.cwiseProduct(tapers.first.row(j));;
230 } else {
231 vecInputFFT = rowData.cwiseProduct(tapers.first.row(j));
232 }
233
234 // FFT for freq domain returning the half spectrum and multiply taper weights
235 fft.fwd(vecTmpFreq, vecInputFFT, iNfft);
236 matTapSpectrum.row(j) = vecTmpFreq * tapers.second(j);
237 }
238
239 inputData.vecTapSpectra.append(matTapSpectrum);
240 }
241 }
242
243 // Compute CSD
244 if(inputData.vecPairCsd.isEmpty()) {
245 MatrixXcd matCsd(iNRows, m_iNumberBinAmount);
246
247 bool bNfftEven = false;
248 if (iNfft % 2 == 0){
249 bNfftEven = true;
250 }
251
252 double denomCSD = sqrt(tapers.second.cwiseAbs2().sum()) * sqrt(tapers.second.cwiseAbs2().sum()) / 2.0;
253
254 for (i = 0; i < iNRows; ++i) {
255 for (j = i; j < iNRows; ++j) {
256 // Compute CSD (average over tapers if necessary)
257 matCsd.row(j) = inputData.vecTapSpectra.at(i).block(0,m_iNumberBinStart,inputData.vecTapSpectra.at(i).rows(),m_iNumberBinAmount).cwiseProduct(inputData.vecTapSpectra.at(j).block(0,m_iNumberBinStart,inputData.vecTapSpectra.at(j).rows(),m_iNumberBinAmount).conjugate()).colwise().sum() / denomCSD;
258
259 // Divide first and last element by 2 due to half spectrum
260 if(m_iNumberBinStart == 0) {
261 matCsd.row(j)(0) /= 2.0;
262 }
263
264 if(bNfftEven && m_iNumberBinStart + m_iNumberBinAmount >= iNFreqs) {
265 matCsd.row(j).tail(1) /= 2.0;
266 }
267 }
268
269 inputData.vecPairCsd.append(QPair<int,MatrixXcd>(i,matCsd));
270 inputData.vecPairCsdImagSqrd.append(QPair<int,MatrixXd>(i,matCsd.imag().array().square()));
271 inputData.vecPairCsdImagAbs.append(QPair<int,MatrixXd>(i,matCsd.imag().cwiseAbs()));
272 }
273
274 mutex.lock();
275
276 if(vecPairCsdSum.isEmpty()) {
277 vecPairCsdSum = inputData.vecPairCsd;
278 vecPairCsdImagSqrdSum = inputData.vecPairCsdImagSqrd;
279 vecPairCsdImagAbsSum = inputData.vecPairCsdImagAbs;
280 } else {
281 for (int j = 0; j < vecPairCsdSum.size(); ++j) {
282 vecPairCsdSum[j].second += inputData.vecPairCsd.at(j).second;
283 vecPairCsdImagSqrdSum[j].second += inputData.vecPairCsdImagSqrd.at(j).second;
284 vecPairCsdImagAbsSum[j].second += inputData.vecPairCsdImagAbs.at(j).second;
285 }
286 }
287
288 mutex.unlock();
289 } else {
290 if(inputData.vecPairCsdImagSqrd.isEmpty()) {
291 for (i = 0; i < inputData.vecPairCsd.size(); ++i) {
292 inputData.vecPairCsdImagSqrd.append(QPair<int,MatrixXd>(i,inputData.vecPairCsd.at(i).second.imag().array().square()));
293 }
294
295 mutex.lock();
296
297 if(vecPairCsdImagSqrdSum.isEmpty()) {
298 vecPairCsdImagSqrdSum = inputData.vecPairCsdImagSqrd;
299 } else {
300 for (int j = 0; j < vecPairCsdSum.size(); ++j) {
301 vecPairCsdImagSqrdSum[j].second += inputData.vecPairCsdImagSqrd.at(j).second;
302 }
303 }
304
305 mutex.unlock();
306 }
307
308 if(inputData.vecPairCsdImagAbs.isEmpty()) {
309 for (i = 0; i < inputData.vecPairCsd.size(); ++i) {
310 inputData.vecPairCsdImagAbs.append(QPair<int,MatrixXd>(i,inputData.vecPairCsd.at(i).second.imag().cwiseAbs()));
311 }
312
313 mutex.lock();
314
315 if(vecPairCsdImagAbsSum.isEmpty()) {
316 vecPairCsdImagAbsSum = inputData.vecPairCsdImagAbs;
317 } else {
318 for (int j = 0; j < vecPairCsdSum.size(); ++j) {
319 vecPairCsdImagAbsSum[j].second += inputData.vecPairCsdImagAbs.at(j).second;
320 }
321 }
322
323 mutex.unlock();
324 }
325 }
326
327 if(!m_bStorageModeIsActive) {
328 inputData.vecPairCsd.clear();
329 inputData.vecTapSpectra.clear();
330 inputData.vecPairCsdImagAbs.clear();
331 inputData.vecPairCsdImagSqrd.clear();
332 }
333}
334
335//=============================================================================================================
336
338 Network& finalNetwork)
339{
340 // Compute final DSWPLI and create Network
341 MatrixXd matNom, matDenom;
342 MatrixXd matWeight;
343 QSharedPointer<NetworkEdge> pEdge;
344 int j;
345
346 for (int i = 0; i < connectivitySettings.at(0).matData.rows(); ++i) {
347
348 matNom = connectivitySettings.getIntermediateSumData().vecPairCsdSum.at(i).second.imag().array().square();
349 matNom -= connectivitySettings.getIntermediateSumData().vecPairCsdImagSqrdSum.at(i).second;
350
351 matDenom = connectivitySettings.getIntermediateSumData().vecPairCsdImagAbsSum.at(i).second.array().square();
352 matDenom -= connectivitySettings.getIntermediateSumData().vecPairCsdImagSqrdSum.at(i).second;
353
354 matDenom = (matDenom.array() == 0.).select(INFINITY, matDenom);
355 matDenom = matNom.cwiseQuotient(matDenom);
356
357 for(j = i; j < connectivitySettings.at(0).matData.rows(); ++j) {
358 matWeight = matDenom.row(j).transpose();
359
360 pEdge = QSharedPointer<NetworkEdge>(new NetworkEdge(i, j, matWeight));
361
362 finalNetwork.getNodeAt(i)->append(pEdge);
363 finalNetwork.getNodeAt(j)->append(pEdge);
364 finalNetwork.append(pEdge);
365 }
366
367 }
368}
369
DebiasedSquaredWeightedPhaseLagIndex class declaration.
Declaration of Spectral class.
This class is a container for connectivity settings.
static Network calculate(ConnectivitySettings &connectivitySettings)
static void compute(ConnectivitySettings::IntermediateTrialData &inputData, QVector< QPair< int, Eigen::MatrixXcd > > &vecPairCsdSum, QVector< QPair< int, Eigen::MatrixXd > > &vecPairCsdImagAbsSum, QVector< QPair< int, Eigen::MatrixXd > > &vecPairCsdImagSqrdSum, QMutex &mutex, int iNRows, int iNFreqs, int iNfft, const QPair< Eigen::MatrixXd, Eigen::VectorXd > &tapers)
static void computeDSWPLI(ConnectivitySettings &connectivitySettings, Network &finalNetwork)
This class holds information about a network, can compute a distance table and provide network metric...
Definition network.h:89
void setUsedFreqBins(int iNumberFreqBins)
Definition network.cpp:506
void append(QSharedPointer< NetworkEdge > newEdge)
void setFFTSize(int iFFTSize)
Definition network.cpp:513
void setSamplingFrequency(float fSFreq)
Definition network.cpp:492
QSharedPointer< NetworkNode > getNodeAt(int i)
Definition network.cpp:163
This class holds an object to describe the edge of a network.
Definition networkedge.h:80
This class holds an object to describe the node of a network.
Definition networknode.h:82
QSharedPointer< NetworkNode > SPtr
Definition networknode.h:85
static QPair< Eigen::MatrixXd, Eigen::VectorXd > generateTapers(int iSignalLength, const QString &sWindowType="hanning")
Definition spectral.cpp:292