MNE-CPP 0.1.9
A Framework for Electrophysiology
Loading...
Searching...
No Matches
unbiasedsquaredphaselagindex.cpp
Go to the documentation of this file.
1//=============================================================================================================
39//=============================================================================================================
40// INCLUDES
41//=============================================================================================================
42
44#include "../network/networknode.h"
45#include "../network/networkedge.h"
46#include "../network/network.h"
47
48#include <utils/spectral.h>
49
50//=============================================================================================================
51// QT INCLUDES
52//=============================================================================================================
53
54#include <QDebug>
55#include <QtConcurrent>
56
57//=============================================================================================================
58// EIGEN INCLUDES
59//=============================================================================================================
60
61#include <unsupported/Eigen/FFT>
62
63//=============================================================================================================
64// USED NAMESPACES
65//=============================================================================================================
66
67using namespace CONNECTIVITYLIB;
68using namespace Eigen;
69using namespace UTILSLIB;
70
71//=============================================================================================================
72// DEFINE GLOBAL METHODS
73//=============================================================================================================
74
75//=============================================================================================================
76// DEFINE MEMBER METHODS
77//=============================================================================================================
78
82
83//*******************************************************************************************************
84
86{
87// QElapsedTimer timer;
88// qint64 iTime = 0;
89// timer.start();
90
91 Network finalNetwork("USPLI");
92
93 if(connectivitySettings.isEmpty()) {
94 qDebug() << "UnbiasedSquaredPhaseLagIndex::calculate - Input data is empty";
95 return finalNetwork;
96 }
97
98 if(AbstractMetric::m_bStorageModeIsActive == false) {
99 connectivitySettings.clearIntermediateData();
100 }
101
102 finalNetwork.setSamplingFrequency(connectivitySettings.getSamplingFrequency());
103
104 #ifdef EIGEN_FFTW_DEFAULT
105 fftw_make_planner_thread_safe();
106 #endif
107
108 //Create nodes
109 int rows = connectivitySettings.at(0).matData.rows();
110 RowVectorXf rowVert = RowVectorXf::Zero(3);
111
112 for(int i = 0; i < rows; ++i) {
113 rowVert = RowVectorXf::Zero(3);
114
115 if(connectivitySettings.getNodePositions().rows() != 0 && i < connectivitySettings.getNodePositions().rows()) {
116 rowVert(0) = connectivitySettings.getNodePositions().row(i)(0);
117 rowVert(1) = connectivitySettings.getNodePositions().row(i)(1);
118 rowVert(2) = connectivitySettings.getNodePositions().row(i)(2);
119 }
120
121 finalNetwork.append(NetworkNode::SPtr(new NetworkNode(i, rowVert)));
122 }
123
124 // Check that iNfft >= signal length
125 int iSignalLength = connectivitySettings.at(0).matData.cols();
126 int iNfft = connectivitySettings.getFFTSize();
127
128 // Generate tapers
129 QPair<MatrixXd, VectorXd> tapers = Spectral::generateTapers(iSignalLength, connectivitySettings.getWindowType());
130
131 // Initialize
132 int iNRows = connectivitySettings.at(0).matData.rows();
133 int iNFreqs = int(floor(iNfft / 2.0)) + 1;
134
135 // Check if start and bin amount need to be reset to full spectrum
136 if(m_iNumberBinStart == -1 ||
137 m_iNumberBinAmount == -1 ||
138 m_iNumberBinStart > iNFreqs ||
139 m_iNumberBinAmount > iNFreqs ||
140 m_iNumberBinAmount + m_iNumberBinStart > iNFreqs) {
141 qDebug() << "UnbiasedSquaredPhaseLagIndex::calculate - Resetting to full spectrum";
142 AbstractMetric::m_iNumberBinStart = 0;
143 AbstractMetric::m_iNumberBinAmount = iNFreqs;
144 }
145
146 // Pass information about the FFT length. Use iNFreqs because we only use the half spectrum
147 finalNetwork.setFFTSize(iNFreqs);
148 finalNetwork.setUsedFreqBins(AbstractMetric::m_iNumberBinAmount);
149
150 QMutex mutex;
151
152 std::function<void(ConnectivitySettings::IntermediateTrialData&)> computeLambda = [&](ConnectivitySettings::IntermediateTrialData& inputData) {
153 compute(inputData,
154 connectivitySettings.getIntermediateSumData().vecPairCsdSum,
155 connectivitySettings.getIntermediateSumData().vecPairCsdImagSignSum,
156 mutex,
157 iNRows,
158 iNFreqs,
159 iNfft,
160 tapers);
161 };
162
163// iTime = timer.elapsed();
164// qWarning() << "Preparation" << iTime;
165// timer.restart();
166
167 // Compute DSWPLV in parallel for all trials
168 QFuture<void> result = QtConcurrent::map(connectivitySettings.getTrialData(),
169 computeLambda);
170 result.waitForFinished();
171
172// iTime = timer.elapsed();
173// qWarning() << "ComputeSpectraPSDCSD" << iTime;
174// timer.restart();
175
176 // Compute USPLI
177 computeUSPLI(connectivitySettings,
178 finalNetwork);
179
180// iTime = timer.elapsed();
181// qWarning() << "Compute" << iTime;
182// timer.restart();
183
184 return finalNetwork;
185}
186
187//=============================================================================================================
188
190 QVector<QPair<int,MatrixXcd> >& vecPairCsdSum,
191 QVector<QPair<int,MatrixXd> >& vecPairCsdImagSignSum,
192 QMutex& mutex,
193 int iNRows,
194 int iNFreqs,
195 int iNfft,
196 const QPair<MatrixXd, VectorXd>& tapers)
197{
198 if(inputData.vecPairCsdImagSign.size() == iNRows) {
199 //qDebug() << "UnbiasedSquaredPhaseLagIndex::compute - vecPairCsdImagSign was already computed for this trial.";
200 return;
201 }
202
203 int i,j;
204
205 // Calculate tapered spectra if not available already
206 // This code was copied and changed modified Utils/Spectra since we do not want to call the function due to time loss.
207 if(inputData.vecTapSpectra.size() != iNRows) {
208 inputData.vecTapSpectra.clear();
209
210 RowVectorXd vecInputFFT, rowData;
211 RowVectorXcd vecTmpFreq;
212
213 MatrixXcd matTapSpectrum(tapers.first.rows(), iNFreqs);
214
215 FFT<double> fft;
216 fft.SetFlag(fft.HalfSpectrum);
217
218 for (i = 0; i < iNRows; ++i) {
219 // Substract mean
220 rowData.array() = inputData.matData.row(i).array() - inputData.matData.row(i).mean();
221
222 // Calculate tapered spectra if not available already
223 for(j = 0; j < tapers.first.rows(); j++) {
224 // Zero padd if necessary. The zero padding in Eigen's FFT is only working for column vectors.
225 if (rowData.cols() < iNfft) {
226 vecInputFFT.setZero(iNfft);
227 vecInputFFT.block(0,0,1,rowData.cols()) = rowData.cwiseProduct(tapers.first.row(j));;
228 } else {
229 vecInputFFT = rowData.cwiseProduct(tapers.first.row(j));
230 }
231
232 // FFT for freq domain returning the half spectrum and multiply taper weights
233 fft.fwd(vecTmpFreq, vecInputFFT, iNfft);
234 matTapSpectrum.row(j) = vecTmpFreq * tapers.second(j);
235 }
236
237 inputData.vecTapSpectra.append(matTapSpectrum);
238 }
239 }
240
241 // Compute CSD
242 if(inputData.vecPairCsd.isEmpty()) {
243 double denomCSD = sqrt(tapers.second.cwiseAbs2().sum()) * sqrt(tapers.second.cwiseAbs2().sum()) / 2.0;
244
245 bool bNfftEven = false;
246 if (iNfft % 2 == 0){
247 bNfftEven = true;
248 }
249
250 MatrixXcd matCsd = MatrixXcd(iNRows, m_iNumberBinAmount);
251
252 for (i = 0; i < iNRows; ++i) {
253 for (j = i; j < iNRows; ++j) {
254 // Compute CSD (average over tapers if necessary)
255 matCsd.row(j) = inputData.vecTapSpectra.at(i).block(0,m_iNumberBinStart,inputData.vecTapSpectra.at(i).rows(),m_iNumberBinAmount).cwiseProduct(inputData.vecTapSpectra.at(j).block(0,m_iNumberBinStart,inputData.vecTapSpectra.at(j).rows(),m_iNumberBinAmount).conjugate()).colwise().sum() / denomCSD;
256
257 // Divide first and last element by 2 due to half spectrum
258 if(m_iNumberBinStart == 0) {
259 matCsd.row(j)(0) /= 2.0;
260 }
261
262 if(bNfftEven && m_iNumberBinStart + m_iNumberBinAmount >= iNFreqs) {
263 matCsd.row(j).tail(1) /= 2.0;
264 }
265 }
266
267 inputData.vecPairCsd.append(QPair<int,MatrixXcd>(i,matCsd));
268 inputData.vecPairCsdImagSign.append(QPair<int,MatrixXd>(i,matCsd.imag().cwiseSign()));
269 }
270
271 mutex.lock();
272
273 if(vecPairCsdSum.isEmpty()) {
274 vecPairCsdSum = inputData.vecPairCsd;
275 vecPairCsdImagSignSum = inputData.vecPairCsdImagSign;
276 } else {
277 for (int j = 0; j < vecPairCsdSum.size(); ++j) {
278 vecPairCsdSum[j].second += inputData.vecPairCsd.at(j).second;
279 vecPairCsdImagSignSum[j].second += inputData.vecPairCsdImagSign.at(j).second;
280 }
281 }
282
283 mutex.unlock();
284 } else {
285 if(inputData.vecPairCsdImagSign.isEmpty()) {
286 for (i = 0; i < inputData.vecPairCsd.size(); ++i) {
287 inputData.vecPairCsdImagSign.append(QPair<int,MatrixXd>(i,inputData.vecPairCsd.at(i).second.imag().cwiseSign()));
288 }
289
290 mutex.lock();
291
292 if(vecPairCsdImagSignSum.isEmpty()) {
293 vecPairCsdImagSignSum = inputData.vecPairCsdImagSign;
294 } else {
295 for (int j = 0; j < vecPairCsdImagSignSum.size(); ++j) {
296 vecPairCsdImagSignSum[j].second += inputData.vecPairCsdImagSign.at(j).second;
297 }
298 }
299
300 mutex.unlock();
301 }
302 }
303
304 if(!m_bStorageModeIsActive) {
305 inputData.vecPairCsd.clear();
306 inputData.vecTapSpectra.clear();
307 inputData.vecPairCsdImagSign.clear();
308 }
309}
310
311//=============================================================================================================
312
314 Network& finalNetwork)
315{
316 // Compute final DSWPLV and create Network
317 MatrixXd matNom;
318 MatrixXd matWeight;
319 QSharedPointer<NetworkEdge> pEdge;
320 int j;
321 double dNTrials = double(connectivitySettings.size() - 1.0);
322
323 for (int i = 0; i < connectivitySettings.getIntermediateSumData().vecPairCsdImagSignSum.size(); ++i) {
324 matNom = connectivitySettings.getIntermediateSumData().vecPairCsdImagSignSum.at(i).second.cwiseAbs() / connectivitySettings.size();
325 matNom = (connectivitySettings.size() * matNom.array().square() - 1.0) / dNTrials;
326
327 for(j = i; j < matNom.rows(); ++j) {
328 matWeight = matNom.row(j).transpose();
329
330 pEdge = QSharedPointer<NetworkEdge>(new NetworkEdge(i, j, matWeight));
331
332 finalNetwork.getNodeAt(i)->append(pEdge);
333 finalNetwork.getNodeAt(j)->append(pEdge);
334 finalNetwork.append(pEdge);
335 }
336 }
337}
338
UnbiasedSquaredPhaseLagIndex class declaration.
Declaration of Spectral class.
This class is a container for connectivity settings.
static void computeUSPLI(ConnectivitySettings &connectivitySettings, Network &finalNetwork)
static Network calculate(ConnectivitySettings &connectivitySettings)
static void compute(ConnectivitySettings::IntermediateTrialData &inputData, QVector< QPair< int, Eigen::MatrixXcd > > &vecPairCsdSum, QVector< QPair< int, Eigen::MatrixXd > > &vecPairCsdImagSignSum, QMutex &mutex, int iNRows, int iNFreqs, int iNfft, const QPair< Eigen::MatrixXd, Eigen::VectorXd > &tapers)
This class holds information about a network, can compute a distance table and provide network metric...
Definition network.h:89
void setUsedFreqBins(int iNumberFreqBins)
Definition network.cpp:506
void append(QSharedPointer< NetworkEdge > newEdge)
void setFFTSize(int iFFTSize)
Definition network.cpp:513
void setSamplingFrequency(float fSFreq)
Definition network.cpp:492
QSharedPointer< NetworkNode > getNodeAt(int i)
Definition network.cpp:163
This class holds an object to describe the edge of a network.
Definition networkedge.h:80
This class holds an object to describe the node of a network.
Definition networknode.h:82
QSharedPointer< NetworkNode > SPtr
Definition networknode.h:85
static QPair< Eigen::MatrixXd, Eigen::VectorXd > generateTapers(int iSignalLength, const QString &sWindowType="hanning")
Definition spectral.cpp:292